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A simple analytical equation of state has been proposed for describing the phase
behavior of three thermodynamic states (solid, liquid, and vapor) of matter. In
terms of reduced parameters, it can be written as:

Pr=
Tr

VR − bR

1VR − dR

VR − cR

2−
aR

V2
R

.

Pr and Tr are reduced pressure and temperature with respect to the critical pres-
sure (Pc) and temperature (Tc), respectively, while VR is a reduced molar volume
defined as VR=PcV/RTc, where R is the universal gas constant. This may be
regarded as an extension of the classical van der Waals’s equation of state for
fluid (liquid and vapor) only states. The four parameters, aR, bR, cR, and dR in
this equation are free adjustable constants, and can be variable with tempera-
ture. The basic physical idea underlining the model is presented, and examples
applied successfully to actual pure substances and mixtures are demonstrated.
Also, applications to the hard-sphere model are examined. Further improve-
ments, limitations, and possible applications of the present model are discussed.

KEY WORDS: argon; carbon dioxide; equation of state; liquid; methane;
phase equilibria; solid; vapor.

1. INTRODUCTION

In 1873, van der Waals proposed an empirical equation of state (EOS) in
his doctoral dissertation [1] in order to describe the phase behavior of
fluids (gas and liquid states). It has been an epoch-making equation,



although the derived equation was originally based on a rather intuitive
idea and limited experimental observations. His contribution on the unified
view of gas and liquid states was properly acknowledged with the Nobel
Prize in Physics in 1910. Later, his intuition and insight have been proved
to be theoretically correct under physically reasonable assumptions. The
equation is composed of a hard-core repulsive part, PHC and an intermole-
cular attractive part, PA:

P=PHC+PA=
RT

V − b
−

a
V2 . (1)

The validity of the separation of PHC and PA, as well as the phase
transition behavior, has been rigorously proved by Lebowitz and Penrose [2].
This simple-looking EOS predicts essentially all fluid phase behaviors of
classical fluids correctly, at least in a qualitative way. It is not only valid for
pure fluid behaviors, but also for mixtures. Among others, one of the most
striking predictions for mixture properties may be the topological classifi-
cation of the global fluid-phase diagram of binary mixtures made by van
Konynenberg and Scott [3].

Since the celebrated van der Waals EOS, numerous modified van der
Waals EOS have been proposed to improve the numerical accuracy [4],
and are categorically called a general ‘‘cubic’’ EOS, because they can be
written in terms of a cubic polynomial equation of molar volume, V.
Typical modifications may be written as:

P=
RT

V − b
−

a
V2+qbV+rb2 . (2)

For example, if q=r=0, it is the original van der Waals EOS, if q=1 and
r=0 with a=1/`T, it is the Redlich–Kwong EOS [5], if q=2 and
r= − 1 with a general T-dependence of a, it is called a Peng–Robinson type
EOS [6], and so on. Sometimes the b parameter is allowed to be a function
of T as well, in order to represent real fluid properties more accurately.
These modified cubic EOS have been found to be quite useful in the actual
application of engineering processes [4, 7].

Further improvement for the van der Waals EOS has been a modifi-
cation of the first term of Eq. (1): the repulsive part of EOS, PHC. Among
others, the most popular version of this modification is due to Carnahan
and Starling [8]. They have proposed the empirical form,

PHC=
RT
V

1+g+g2 − g3

(1 − g)3 , g —
b

4V
, (3)
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which agrees very well with the fluid branch of computer simulations of
hard-sphere assemblies and also is in good agreement with the theoretical
Percus–Yevick hard-sphere isotherms [9]. Extensive applications with this
modification have been reported in the literature [10, 11]. The volumetric,
particularly liquid-phase, properties, have been significantly improved
numerically, but no qualitatively new predictions have resulted.

All these equations and more sophisticated fluid EOS are able to
predict VLE (vapor-liquid equilibria), LLE (liquid-liquid equilibria), VLLE
(vapor-liquid-liquid equilibria), and critical points of VLE and LLE as well
as all other thermodynamic properties, except for the phase behaviors and
thermodynamic properties including the solid state. In practice, the solid
state is usually treated as a separate and different thermodynamic equation
at the phase transition, and then the phase equilibrium is solved by com-
bining the fluid-phase EOS [12].

The first attempt to include the solid state in a unified equation of
state was made by Longuet–Higgins and Widom [13]. They adopted the
numerical data from the computer ‘‘experiments’’ of hard spheres [14] for
the PHC part in the wan der Waals EOS, and calculated the thermodynamic
properties at the SLV (solid-liquid-vapor) triple point of argon with some
reasonable assumptions. Later, with the advent of powerful computers,
systems having more realistic interaction potentials were investigated in
order to simulate the SLV behavior using Monte Carlo computations.
Hansen and Verlet [15] used the Lennard-Jones potential and applied the
model to argon’s SLV phase behavior, while Hiwatari and Matsuda [16]
employed a more general [Kac] potential to predict melting properties of
noble gases and alkali metals and called their model ‘‘Ideal Three-Phase
Model.’’ Very recently, Lamm and Hall [17] have made Monte Carlo
computer experiments to construct the SLV three-phase diagrams for
binary Lennard-Jones mixtures.

However, to our best knowledge, only few algebraic equations, quan-
titatively describing solid-liquid-vapor phases, have been reported in the
literature [18–20]. The purpose of the present work has been to develop
such an EOS. In this report, we propose a simple analytic EOS describing
the SLV behavior in a unified way, and it can be regarded as an extension
of the van der Waals fluid EOS. First, the basic physical idea underlying
our model is presented. Then the method to set up the proper EOS
parameters is discussed for the practical application. In Section 3, we apply
the present EOS to actual pure substances: argon, methane, and carbon
dioxide. Then, the application to mixtures is examined using a binary
system of carbon dioxide/methane mixtures. Also, the well-known
solid/fluid phase transition of hard-sphere ensembles is analyzed with this
algebraic EOS. In Section 4, discussions of the present analyses, further
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improvements and limitations of the EOS, and possible useful applications
are given, and then concluding remarks follow.

2. MODEL DEVELOPMENT

The thermodynamic principles [the zeroth and first laws] prove the
existence of an EOS, a functional form among T, P, and V variables in an
equilibrium state, although the specific form cannot be predicted. In
general, the form of the EOS is necessarily empirical, except for the ideal
gas EOS and certain statistical mechanical models. However, the functional
form cannot be arbitrary, but must satisfy empirically known facts. Among
others, the EOS properties of pure substances, important and relevant to
the present model development are:

(a) When V Q ., it will approach the ideal gas form: PV=RT.

(b) The thermodynamically stable state, including metastable states,
must satisfy the mechanical stability condition of (“P

“V)T [ 0.

(c) The existence of the vapor-liquid critical point.

(d) The existence of the stable solid phase, which has a liquid-like
steep slope in (“P

“V)T, having a region with P > 0, in addition to the
liquid and vapor phases.

(e) There exists no critical point between solid and fluid equilibria.

(f) The existence of the first-order phase transition between vapor
and liquid (VLE), solid and liquid (SLE), and solid and vapor
(SVE), where the so-called van der Waals ‘‘S’’ loop exists in the
isothermal PV diagram, and the Maxwell’s equal-area construc-
tion can be applied over the ‘‘S’’ loop.

(g) The existence of negative pressure regions and the condition of
(“P

“V)T > 0 are allowed within the ‘‘S’’ loop.

Then we look for a simple analytical EOS which satisfies these condi-
tions. Equation (1), or a more general form, Eq. (2), certainly satisfies these
conditions except for the solid state, since it does not possess the ‘‘solid-
phase branch’’ in the physically valid region: V > b. One might consider a
fifth-order (or higher-order) polynomial form in V, which could possess an
additional continuous van der Waals ‘‘S’’ loop in the PV diagram, present-
ing the solid-liquid phase transition, besides the vapor-liquid transition ‘‘S’’
loop. This is certainly possible. However, such an analytically continuous
function leads to the existence of a solid-fluid critical point, not satisfying
the required condition (e). Thus, the solid-phase branch in an EOS must be
separated from the fluid-phase branches and analytically discontinuous at
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solid-fluid transitions. Then algebraic and topological arguments, which
satisfy the conditions (a) through (g), lead to an EOS expression of the
following form, as being an extension of the van der Waals fluid EOS:

P=
RT

V − b
1V − d

V − c
2k

−
a

V2+qbV+rb2 , (4)

where constants a, b, c, and d are all positive numbers with b < d < c,
k=integer, the physically valid region of EOS is V > b, and q and r have
the same meanings as those in Eq. (2). This form has been inspired from
considerations of the analytical and topological geometry. It may be best
appreciated by schematic isotherms in the PV diagram illustrated in Figs. 1
and 2 at the SLV (solid-liquid-vapor) triple point, where the constants a, b,
c, d, q, and r are assumed to be ‘‘proper’’ values to produce such desired
EOS. Both cases of k=odd and even integers possess physically acceptable
shapes, although the topology in the solid branch is different. These figures
are easily constructed without performing numerical calculations, using the
fact that at V=b or c, PHC Q ± ., (the sign depends upon the relative
order among b, c, and d as well as the parity of k=odd or even); P Q 0 at

V

P

0 b c

solid liquid

vapor

Fig. 1. Schematic isothermal PV diagram of Eq. (4) with k=odd
integer at the solid-liquid-vapor triple point: 0 < b < d < c and
V > b. The hatched areas are the Maxwell’s equal area construction,
and the solid circles are the equilibrium points for the solid, liquid,
and vapor phases.
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V Q .; when V=d, PHC=0; P is the sum of two functions, PHC and PA,
PA is the familiar van der Waals attraction part, and the total number of
roots of the polynomial equation, Eq. (4) is known.

The regions with dP/dV > 0 are of course thermodynamically
unstable, being similar to the case of the van der Waals EOS within the ‘‘S’’
loop. It should be noted that the solid and liquid branches do not possess
the ordinary van der Waals continuous ‘‘S’’ loop, but here the ‘‘S’’ loop
forms an ‘‘infinite-size S’’ loop. This is because P Q ± . at V=c.
However, as far as the phase equilibrium is concerned, it is not fundamen-
tally different from the ‘‘ordinary continuous finite-size S’’ loop. The equi-
librium condition can be equally applied with Maxwell’s equal-area con-
struction for the two (a and b) phase equilibrium over the ‘‘S’’ loop,
mathematically P(Va − Vb)=>Va

Vb
P dV, as long as the integral has a finite

value. However, the important difference is that this ‘‘infinite-size S’’ loop
does not lead to any solid-liquid critical point. Thus, the EOS condition (e)
is satisfied.

Equation (4) with a general k value becomes complicated when we
derive various thermodynamic relations and properties, although they can
be written in analytically closed forms. Since the qualitative predictions

V

P

0 b c

solid
liquid

vapor

Fig. 2. Schematic isothermal PV diagram of Eq. (4) with k=even
integer at the solid-liquid-vapor triple point: 0 < b < d < c and
V > b. The hatched areas are the Maxwell’s equal area construction,
and the solid circles are the equilibrium points for the solid, liquid,
and vapor phases.
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based on these general-k EOS are expected to be the same, we choose the
simplest case, that is, k=1 and also q=r=0. In the following analysis, we
examine this type of EOS:

P=
RT

V − b
1V − d

V − c
2−

a
V2 . (5)

In terms of dimensionless parameters, it can be written as:

Pr=
Tr

Zc(Vr − br)
1Vr − dr

Vr − cr

2−
ar

V2
r Z2

c

, (6)

where the reduced parameters are defined:

Zc=
PcVc

RTc
, Pr=

P
Pc

, Tr=
T
Tc

, Vr=
V
Vc

(7)

br=
b
Vc

, cr=
c
Vc

, dr=
d
Vc

(8)

ar=
Pca

(RTc)2 . (9)

Then the compressibility factor, Z becomes:

Z=Zc
PrVr

Tr
=

Vr

Vr − br

1Vr − dr

Vr − cr

2−
ar

Vr ZcTr
. (10)

A more compact dimensionless form of Eq. (5) is:

Pr=
Tr

VR − bR

1VR − dR

VR − cR

2−
aR

V2
R

, (11)

where the volumetric parameters are reduced by a factor of Pc/RTc, instead
of the critical volume Vc: VR=PcV

RTc
=ZcVr, bR=Pcb

RTc
, cR=Pcc

RTc
, dR=Pcd

RTc
, and

aR=ar.
The qualitative EOS shape such as shown in Figs. 1 and 2 is easily

constructed by use of the elementary knowledge of analytical geometry,
without making any numerical analyses. However, to set up proper con-
stants for a, b, c, and d in the present EOS requires some numerical
analyses. Often, the critical-point conditions, dP/dV=d2P/dV2=0, are
employed to determine the constants of a simple EOS, such as a general
cubic EOS, Eq. (2). This method determines a maximum of three constants,
since the conditions provide only three independent coupled equations.
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Here, four parameters cannot be uniquely determined, but the existence of
the critical point in an EOS provides necessary constraints among these
four parameters. Using the reduced EOS form, Eq. (6), the required con-
straints for the existence of the critical point are derived as:

3arbrcr/Z2
c − brcr − dr/Zc − ar/Z2

c +3=0 (12)

3arbrcr/Z2
c − ar(br+cr)/Z2

c +1=0 (13)

arbrcr/Z2
c − br − cr − 1/Zc+3=0. (14)

These three equations contain five free parameters, including Zc. Here,
we treat Zc as an adjustable parameter, or an EOS formal constant, instead
of assigning the actual experimental value. This treatment is the same as
the common practice in the general cubic EOS, Eq. (2) application [4].
Then, if any two among five parameters are given, the other three param-
eters are uniquely determined. For example, if br and Zc are specified, cr is
a positive root of the following quadratic equation, derived from Eqs. (13)
and (14), when br ] 1/3.

c2
r +cr(br − 3+1/Zc) − br(br − 3+1/Zc)/(3br − 1)=0 (15)

Then, ar is determined from Eq. (14), and next dr can be obtained from
Eq. (12). In the special case of br=1/3, Eqs. (12) to (14) reduce
Eq. (6) to the original van der Waals EOS with Zc=3/8, ar=27/64, and
cr=dr=0. The choice of br and Zc, as the two specified parameters, is
arbitrary. However, they are convenient for assigning proper values, since
they have some physical meanings; i.e., br (or equivalently cr) is a limiting
value for the solid (or liquid) reduced volume, and Zc is the familiar critical
compressibility factor. It should be noted that br is equivalent (or symme-
tric) with cr in the present case (k=1), as clearly seen in Eq. (6). Here we
designate the smaller value as br, without loss of generality.

Figure 3 shows a summary chart of the numerical and analytical
analyses for the proper choice for br (or equivalently cr) and Zc parameters.
Depending upon a set of the parameters, seven topologically different
shapes of EOS arise. Regions denoted as A in Fig. 3 are the proper
parameter region, which corresponds to the EOS type in Fig. 1; i.e., a phy-
sically stable solid-phase branch and VLE (vapor-liquid-equilibrium) criti-
cal point can exist. The parameter dr is always between br and cr in this
case. In Regions B and D, the critical point occurs in the solid-phase
branch and, for the latter, no stable liquid-phase branch exists. Region C
has the critical point in the fluid-phase branch, but essentially no stable
liquid phase can exist. Region E has a proper fluid EOS type, but does not
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Fig. 3. Classification chart of various topological shapes in Eq. (6). The area
denoted A is the proper EOS parameter region, which gives physically correct
isotherms as illustrated in Fig. 1. See text for other possible shapes, denoted as B
through F. The horizontal line is at 1/3 and the vertical line is at 0.375.

have a physically meaningful solid-phase branch. In Region F, the param-
eter ar is negative and physically incorrect. Finally, Region G cannot
possess any kind of critical points, where mathematically, Eq. (15) does not
have real roots.

2.1. Setting up EOS Parameters

Now we know at least the proper range of parameters for the present
EOS, based on the requirement for the existence of the VLE critical point.
In order to set up physically realistic EOS parameters, a, b, c, d, and Zc,
other constraints are needed. Ordinary pure substance has the solid-liquid-
vapor triple point, and the condition of the triple point existence can be
used for that purpose.

The triple point, that is, the solid-liquid-vapor equilibrium (SLVE), is
obtained by solving the following set of equations, using the Maxwell’s
equal-area construction between equilibrium phases a and b.

Pr(Va − Vb)=F
Va

Vb

Pr dVr=
Tr

Zc(br − cr)
3br ln

Va − br

Vb − br
− cr ln :Va − cr

Vb − cr

:

+dr ln
Vb − br

Va − br

:Vb − cr

Va − cr

: 4+
ar

Z2
c

1 1
Va

−
1
Vb

2 . (16)
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The subscripts, a and b, represent solid and liquid (SLE), solid and vapor
(SVE), and vapor and liquid (VLE).

With this additional information of the triple-point existence (triple-
point temperature and pressure, Trt and Prt), the necessary EOS parameters
can be obtained. To do so, we use the following strategy:

(1) Select proper values in br and Zc from the chart in Fig. 3.
(2) Obtain ar, cr, and dr using Eqs. (12) to (14): the critical point

conditions.
(3) By keeping Zc, cr, and dr constant, obtain new values in ar and

br, (art, brt), so as to satisfy a set of Eq. (16) with desired Trt and
Prt: the triple point condition. Here, a two-dimensional Newton–
Raphson method can be employed for the numerical analysis.

(4) Check the proper order: brt < dr < cr. This is required because the
EOS must be the proper topological shape even at the triple
point. If it is not satisfied, go back to (1) and try another set.

(5) If temperature-independent parameters are desired, i.e., art=ar

and brt=br, then go back to (1). Repeat the process, until this
condition is met.

For example, parameters thus obtained are: ar=art=0.4215, br=brt=
0.3222, cr=0.3692, dr=0.3598, Zc=0.3753, with Trt=0.4374 and Prt=
0.01114. With these constants, Eq. (6) predicts the VLE critical point, the
SLV triple point, and two-phase boundaries for VLE, SLE, and SVE.
Various thermodynamic properties at the triple point are calculated to be
not unrealistic for typical simple substances. However, in order for the
properties to be numerically more accurate, the temperature dependence of
some of the parameters is required. This situation is the same as for the
case of the general van der Waals EOS, Eq. (2), and it is discussed in the
following section.

2.2. T-Dependence of a(T) and b(T) Parameters

The previous section described how to set up the EOS parameters
using the VLE critical point and the triple-point condition. The parameters
ar and br obtained from the critical point and those from the triple point art

and brt are generally different. This means both parameters have a temper-
ature dependence. In this section, we explore proper T-dependent functions
for these parameters: a(T) and b(T).

Although they are empirical functions, there is some theoretical gui-
dance to the general shape and constraint. First, both parameters are (non-
zero) finite for all temperatures, including T at 0 and . K. Secondly, a(T)
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has a maximum, as shown below. The third law of thermodynamics (Nernst’s
theorem) states entropy, S, tends to zero at 0 K. Then, using the Maxwell
relation, (“P

“T)V=(“S
“V)T, the following condition results:

1“P
“T

2
V

=0 for T=0. (17)

Applying this condition to the present EOS, Eq. (5), we arrive at:

da
dT

=
RV2

0

V0 − b
1V0 − d

V0 − c
2 , (18)

where V0 is a molar volume of solid (crystal) at 0 K, and a relation,
b < V0 < d < c, always holds in the solid-phase branch of the present EOS.
This means da/dT > 0 (positive slope) at T=0 K, since the right-hand side
of Eq. (18) is positive. On the other hand, in high-temperature regions, a(T)
is known to be a decreasing function, i.e., da/dT < 0 (negative slope), as
exemplified in the empirical Redlich–Kwong EOS [5], where a(T)=
1/`T. It should be also mentioned that the nature of the negative slope in
a(T) can theoretically be proved by calculating the second virial coefficient,
B(T), under a high temperature approximation while assuming a physically
reasonable intermolecular potential such as the Lennard-Jones potential.
Therefore, at a very low temperature, a(T) must possess a maximum.

Thus, we propose the following form for a(T) as one of the proper
functions, which satisfy the above arguments.

ar(Tr)=a0+a1Tr exp( − a2Tn
r ) (19)

where a0, a1, a2, and n are all positive. ar(0 or .)=a0, dar/dTr=a1 at Tr=0 K,
and the maximum occurs at Tr=(na2)−1/n.

Concerning b(T), the choice is made solely based on a finitely-
bounded and positive function for all temperatures:

br(Tr)=b0+b1 exp( − b2Tm
r ), (20)

where b0 > 0, b2 > 0, m > 0, and br(0)=b0+b1 > 0. However, an important
constraint among these parameters is that a relation, br(Tr) < dr, must be
satisfied for all temperatures, in order for the EOS to be the proper topo-
logical shape as discussed in the earlier sections.

The method to determine the adjustable constants in Eqs. (19) and
(20) is described in a later section, when applied to real substances.
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2.3. Thermodynamic Derived Functions

Although the derivation is straightforward for the present EOS form,
Eq. (6), or Eq. (10), some thermodynamic property functions for pure
compounds may be useful and convenient for the application, with their
explicit forms. Here, we assume ar and br parameters to be temperature
dependent.

The fugacity coefficient f is given by:

ln f=Z − 1 − ln Z − F
Vr

.

(Z − 1)/Vr dVr=Z − 1 − ln Z − I1,

where

I1 —
1

cr − br

3cr ln :1 −
cr

Vr

:+dr ln : Vr − br

Vr − cr

:− br ln :1 −
br

Vr

: 4+
ar

TrVr Zc
. (21)

The residual property, DMŒ, is defined here as DMŒ — M (real state) −
M (ideal-gas state). Then, for the reduced residual entropy, it leads to:

DSŒ/R=Tr F
Vr

.

1 “Z
“Tr

2
Vr

;Vr dV+F
Vr

.

(Z − 1)/Vr dVr+ln Z=I1+I2+ln Z,

where

I2 — 1dbr

dTr

2 dr − cr

(cr − br)2 ln :Vr − br

Vr − cr

:+br − dr

Vr − br
+1dar

dTr
−

ar

Tr

2 1
Vr Zc

. (22)

For the reduced residual enthalpy, it is expressed as

DHŒ/RTc=T2
r F

Vr

.

1 “Z
“Tr

2
Vr

;Vr dVr+Tr(Z − 1)=TrI2+Tr(Z − 1). (23)

The reduced isochoric heat capacity is:

DC −

v/R=Tr F
Vr

.

1“
2Pr

“T2
r

2
Vr

dVr=
1

Vr − br

3D2(cr − dr)
(cr − br)2 +

D1(br − dr)
cr − dr

4

+
D2(cr − dr)

2(Vr − b)2
r (br − cr)

−
br − dr

(br − cr)2
1 D2

br − cr
+D1

2 ln :Vr − cr

Vr − br

:

+
Tr

Vr Zc

1d2ar

dT2
r

2 , (24)
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where

D1 — Tr
1dbr

dTr
+Tr

d2br

dT2
r

2 , D2 — 2T2
r
1dbr

dTr

22

.

The second virial coefficient is in the reduced form:

B(Tr)/Vc=br(Tr)+cr − dr −
ar(Tr)
Tr Zc

. (25)

The other properties, coefficient of thermal expansion, aP=(1/V)
(“V/“T)P, isothermal bulk compressibility, bT=(−1/V)(“V/“P)T, iso-
baric heat capacity (Cp), speed of sound (u), etc. are similarly derived
in analytically closed forms: Cp=CV+TVa2

p/bT, u2=(Cp/CV)(V/MbT),
where M is the molar mass.

3. APPLICATIONS

In this section, we first apply the proposed EOS to actual pure sub-
stances: Ar (argon), CO2 (carbon dioxide), and CH4 (methane). Ar is often
a standard compound to check the validity of EOS. If it is well presented
by any theoretical model, all other classical monoatomic compounds such
as Ne, Xe, and Kr, except for the quantum fluid (He), should also be
modeled properly with the same model, since the principle of correspond-
ing states works well among these noble gases. Similarly, it is expected to
work well for nonpolar and spherical molecules like CH4. Among so-called
‘‘simple’’ fluids, CO2 has some unique thermodynamic properties. The
triple-point (reduced) temperature of about 0.7 is the highest, and thus the
‘‘normal boiling’’ point, i.e., at one atmosphere, does not exist; it becomes
the ‘‘normal sublimation’’ point, being in the solid/vapor equilibrium state
[21]. Although it is classified as a nonpolar compound by the general
definition without having a permanent electric dipole moment, its molecu-
lar quadrupole moment is large, and it behaves like a polar compound in
some of the thermodynamic properties [22]. The molecular shape is not
spherical, being different from Ar and CH4. Thus, the applicability to CO2

may provide a further validity test for the present EOS.
Next, we examine whether the present EOS can be applied to mixture

phase properties, using a binary system of CO2/CH4. This system is not
only important for industrial applications, but also challenging, since the
phase behavior is far from being an ideal mixture. In addition, the triple-
point locus of the solid-liquid-vapor equilibrium shows a peculiar shape,
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due to the interaction of the solid phase of CO2 and the supercritical fluid
of CH4 in certain temperature/pressure conditions [23, 24].

The third example is an application to hard-sphere ensembles. Although
the hard sphere is purely a model ‘‘compound,’’ many studies and signifi-
cant contributions have been made in the theory of statistical physics and
thermodynamics [9].

3.1. Pure Compounds: Ar, CO2, and CH4

How accurately the thermodynamic behaviors and properties of real
substances are modeled by a proposed EOS depends upon the type of EOS,
the number of adjustable EOS parameters, and how many and what kind
of experimental data are used to determine the adjustable parameters. The
present purpose is to demonstrate the feasibility of the proposed EOS for
actual substances, not the presentation with a numerically high accuracy.
Thus, we use a minimum amount of information to set up the EOS param-
eters: the conditions of VLE critical point and the triple point. The basic
strategy to set up the proper EOS parameters in this way has been
described in Sections 2.1 and 2.2, although it is neither unique nor the best.
Here we follow this methodology.

The proper EOS parameters can be obtained, using the strategy (1)
through (4) in Section 2.1, together with a further constraint about the
liquid volume information of the triple point: not necessarily being exact,
but at least being reasonably close. This process can be rather easily made.
Then, we have the two sets of ar and br parameters: (arc, brc) at Tr=1, and
(art, brt) at Tr=Trt. Next, we have to find out the T-dependence of these
parameters in Eqs. (19) and (20). These equations contain four adjustable
parameters within themselves, with certain restrictions as discussed in
Section 2.2. At least two parameters in each equation can be determined
from these two sets of ar and br parameters. For further constraints to fix
those parameters, the information about the Boyle-point temperature, TrB,
and the maximum inversion temperature of Joule–Thomson’s coefficients,
T rJT can be used. The Boyle point, where the second virial coefficient
becomes zero, is determined from Eq. (25). T rJT is determined from the
relation: B/TrJT=(dB/dTr), where B is given by Eq. (25). For noble gases,
TrB is about 2.7 and T rJT is about 5.1 [4]; for CO2 and CH4, TrB is 2.37 and
2.67, respectively [21, 26].

To make the analysis a little easier, we assumed rather arbitrarily
b2=(1/0.75)m in Eq. (20). Then, adjusting the exponent m and n in
Eq. (19) by some trials and errors, we obtained all necessary parameters in
Eqs. (19) and (20) so as to satisfy the restrictions and constraints men-
tioned above. Although they are not necessarily unique, nor optimal, the
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Table I. EOS Constants in Eq. (6)

cr dr Zc

Ar 0.34598 0.33717 0.37510
CH4 0.33739 0.33020 0.37503
CO2 0.34017 0.32309 0.37510

Table II. EOS Constants for ar and br in Eq. (6), Using Eqs. (19) and (20)

a0 a1 a2 n b0 b1( × 10 −2) b2 m

Ar 0.35440 52.5178 6.65460 0.404 0.32400 − 2.25797 17.7577 10
CH4 0.32027 147.615 7.30936 0.309 0.32608 − 2.32890 5.61866 6
CO2 0.28578 82.0637 6.40361 0.424 0.31588 − 4.90960 5.61866 6

Table III. Thermodynamic Properties of Argon at the Triple Pointa

DVls/Vs u bT ( × 10 −3) aP ( × 10 −3)
(%) DSls/R DSlv/R Cv/R CP/R (m · s −1) ln Z (MPa −1) (K −1)

Calc. 15.6 1.72 9.85 3.56 5.99 908 − 5.63 1.44 3.08
Obs. 15.0 1.69 9.39 2.64 5.36 863 − 5.88 1.93 4.29

a Property comparison between the present model calculation (Calc.) and observed (Obs.)
values [16, 33]. DVls/Vs: relative volume change from solid to liquid. DSls/R: entropy
change from solid to liquid. DSlv/R: entropy change from liquid to vapor. Cv/R: isochoric
heat capacity of liquid. CP/R: isobaric heat capacity of liquid. u: speed of sound of
liquid. Z: compressibility factor of liquid. Isothermal bulk compressibility of liquid, bT=
( − 1/V)(“V/“P)T. Coefficient of liquid thermal expansion, aP=(1/V)(“V/“T)P.

Table IV. Thermodynamic Properties of Methane at the Triple Pointa

DVls/Vs u bT ( × 10 −3) a P ( × 10 −3)
(%) DSls/R DSlv/R Cv/R CP/R (m · s −1) ln Z (MPa −1) (K −1)

Calc. 12.0 1.76 12.2 4.35 6.59 1883 − 7.23 0.95 2.04
Obs. – 1.24 8.84 4.18 6.50 1539 − 7.50 1.45 2.95

a See the footnote of Table III for the meaning of symbols. Obs. [26].
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Table V. Thermodynamic Properties of Carbon Dioxide at the Triple Pointa

DVls/Vs u bT ( × 10 −3) a P ( × 10 −3)
(%) DSls/R DSlv/R Cv/R CP/R (m · s −1) ln Z (MPa −1) (K −1)

Calc. 27.7 4.97 10.0 4.43 13.0 1186 − 4.22 1.78 3.39
Obs. 28.4 4.79 8.56 5.16 10.3 976 − 4.53 1.79 3.08

a See the footnote of Table III for the meaning of symbols. Obs. [21].

sets of parameters obtained for Ar, CH4, and CO2 are listed in Tables I
and II.

Now that the EOS parameters have been set up, we can predict
various thermodynamic properties and phase behaviors for these com-
pounds. Some calculated properties at the triple point are shown in Tables III,
IV, and V, compared with available experimental data for Ar, CH4, and
CO2. The global phase diagrams of Ar and CO2 are given in Figs. 4 to 7,
compared with some selected observed data. Although they are not shown
here, similar results have been obtained for CH4. These comparisons show
that the present EOS can describe the solid, liquid, and vapor phases
reasonably well for these simple compounds.
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3.2. Mixtures: CO2/CH4

An interesting challenge is to see whether the present EOS can be
applied to the mixture’s phase behavior as well, particularly for the case
involved in the solid phase. To do so, we employ the conventional mixing
rule with the pure component EOS parameters, and also the non-reduced
EOS form in Eq. (5), in order to avoid the unknown reducing (critical)
parameters for mixtures.

Z=
PV
RT

=
V(V − d)

(V − b)(V − c)
−

a
VRT

(26)

Here, the mixing and combining rules for a, b, c, and d parameters are
modeled by the so-called van der Waals/Lorentz–Berthelot rules with kij,

a= C
N

i, j=1
`aiaj (1 − kij) xixj (27)

b= C
N

i=1
bixi, c= C

N

i=1
cixi, d= C

N

i=1
dixi, (28)
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where kij is an adjustable parameter, which is often called the binary
interaction parameter: kii=0, and kij=kji. The fugacity coefficient for the
ith species in N component mixtures is calculated by the following stan-
dard thermodynamic equation [2]:

ln fi=F
.

V

51“n Z
“ni

2
T, nV, nj

− 16 dV
V

− ln Z. (29)

Then, for the present EOS it leads to:

ln fi=
1

b − c
5c ln :1 −

c
V
:− b ln 11 −

b
V
26

−
ci(b − d)+bi(d − c)+(b − c)(d − di)

(b − c)2 ln :V − c
V − b

:

−
1

b − c
5ci(c − d)

V − c
+

bi(d − b)
V − b

6−
2 ;N

j=1 `aiaj (1 − kij) xj

VRT
− ln Z.

(30)

Similarly, other thermodynamic properties of mixtures, such as enthalpy,
entropy, heat capacity, etc. can be written in analytically closed forms.

An example taken here is a binary system of CO2/methane mixtures,
in which methane VLE and supercritical phases are intercepted by the CO2

solid phase, and a three-phase (SLVE triple point) locus arises [23, 24].
The three-phase equilibrium is solved by the usual thermodynamic equilib-
rium conditions:

fS
i xS

i =fL
i xL

i =fV
i xV

i , i=1, 2 (1 for methane, and 2 for CO2) (31)

where superscripts, S, L, and V represent the solid, liquid, and vapor
phases, respectively, and each phase has the same temperature and pres-
sure. The three-phase equilibrium in a binary system is a univariant state
according to the Gibbs phase rule, and thus with a given temperature, the
corresponding pressure and each phase composition (mole fraction, xi) can
be completely determined by solving the above equations.

In order to obtain the numerical solution of these equations, the
binary interaction parameter, kij, must be set properly. kij is expected to be
about 0.09 to 0.15 for this binary system, since it is known in the fluid state
[27] to be 0.0973 for CO2/methane [for Soave–Redlich–Kwong EOS]
and 0.15 for CO2/hydrocarbons [for Peng–Robionson EOS]. It has been
found from trials and errors that kij of about 0.10 to 0.12 is a proper value
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for the present EOS. The calculated results for SLVE phase behaviors with
kij=0.117 are shown in Figs. 8–10. With the same kij, a VLE Px diagram
has been also calculated at 230 K and compared with the experimental
values [28] in Fig. 11.

It may be fair to say that the present model predictions are in good
agreement with the observed data, using only one adjustable parameter, kij.
Tillner-Roth also modeled successfully this challenging system using highly
accurate fluid EOS for both pure compounds, combined with a separate
and different thermodynamic equation for the solid CO2, where the solid
state of mixtures was assumed to be pure CO2 [12]. The present model
prediction for the SLVE triple-point locus seems in better agreement with
the experimental data [23, 24]. The solid phase is predicted in our model
to be a mixture containing a small amount of methane.

3.3. Hard-Sphere Phase Transition

The hard-sphere model has played significant roles on various impor-
tant developments in statistical physics and thermodynamics [9]. One of
the remarkable things is that the equation of state for hard-sphere
ensembles has been solved analytically [26], based on the Percus–Yevick
approximation of the exact integral equation for the radial distribution (or
direct correlation) function in the theory of liquids. However, the derived
EOS did not show any phase transition (or singularity) within the physi-
cally meaningful region. On the other hand, other approximations, the
Kirkwood equation or the Yvon–Born–Green equation, cannot be solved
analytically, but by numerical analyses Kirkwood and Boggs [30] pre-
dicted an instability of the fluid state, well below the closest packing
density of the solid, indicating the possible fluid/solid phase transition for
hard spheres. Later, Alder and Wainwright [14] and Wood and Jacobson
[31] confirmed such a phase transition by computer simulations (‘‘experi-
ments’’) using molecular dynamics for the former and the Monte Carlo
method for the latter. This fascinating phenomenon of hard spheres is
sometimes called the ‘‘Alder Transition.’’

By use of the computer ‘‘experiments’’ while imposing the thermody-
namic equilibrium condition, Hoover and Ree [32] obtained the transition
densities, rS (solid), rL (liquid), and compressibility factor, ZSL:

rS/r0=0.736 ± 0.003

rL/r0=0.667 ± 0.003

ZSL=P/r0kT=8.27 ± 0.13
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where r0 is the closest packing density of hard spheres (diameter of s):
r0=`2/s3.

It is interesting to see whether the present simple EOS can predict
similar results. In our case, the hard-sphere EOS becomes, by setting a=0
in Eq. (5) and being reduced with V0=NA/r0, [NA is the Avogadro’s
number]:

ZSL=
PV0

RT
=

Vh − dh

(Vh − bh)(Vh − ch)
(32)

where Vh — V/V0, bh — b/V0, ch — c/V0, and dh — d/V0. Then, the phase-
equilibrium condition, i.e., the Maxwell’s equal-area construction, is given
by:

ZSL(VhL − VhS)=F
VhL

VhS

Vh − dh

(Vh − bh)(Vh − ch)
dVh

=
1

bh − ch

3(bh − dh) ln :VhL − bh

VhS − bh

:+(dh − ch) ln :VhL − ch

VhS − ch

: 4 .

(33)

Since VhS(=r0/rS) and VhL(=r0/rL) are roots of the quadratic equation
Eq. (32) and can be analytically solved, the coupled nonlinear equations,
Eqs. (32) and (33), are easily solved for VhS, VhL, and ZSL by the ordinary
Newton–Raphson method, with a specified set of (bh, ch, dh) parameters.
Or, vice versa, a set of parameters, bh, ch, dh, can be similarly obtained with
given values in VhS(=r0/rS), VhL(=r0/rL), and ZSL.

Here we use the parameter (br, cr, dr) set obtained in the analysis of Ar
at T Q . [see Section 3.1]. Then, the following phase-transition param-
eters result, with a normalization factor of Vc/V0=4.082:

rS/r0=0.735

rL/r0=0.668

ZSL=P/r0kT=8.14.

These are in excellent agreement with those by Hoover and Ree [32] men-
tioned above. Furthermore, from the normalization factor of 4.082 and the
observed argon Vc of 74.59 cm3 · mol −1 [30], the hard-sphere diameter, s,
for Ar is calculated to be 0.350 nm. It is quite reasonable, compared with
the literature values: 0.340 to 0.347 [25] and 0.354 nm [34]. This means
the hard-sphere model very well describes the solid/liquid transition of Ar,
as demonstrated by Longuet-Higgins and Widom [13], using the computer
‘‘experimental’’ data.
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It should be mentioned briefly here about the virial coefficients of hard
spheres, since many efforts in the past have been made to calculate the
virial equation of state. Among the infinite number of coefficients, only the
first seven or eight coefficients have been calculated by the exact integra-
tion method [35, 36]. The profound complexity of the cluster integrals
inhibits further calculations. A challenge to extending more coefficients is
still an active research area [36–38]. So far, there is no indication of the
solid-fluid phase transition [38]. However, one must bear in mind that the
virial equation of state is valid only for the fluid (low and medium density)
state. In fact, it is in excellent agreement with the fluid branch of the com-
puter ‘‘experiment’’ of hard spheres. The hard-sphere virial coefficients by
the present EOS will be discussed in a later section.

4. DISCUSSIONS

Computer ‘‘experiments’’ with the Monte Carlo or molecular dynam-
ics method provide useful information including the solid state for model
compounds, such as Lennard-Jones fluids and hard spheres. With ever-
improving computer power, this type of work will bring us further valuable
insights of various phase behaviors of complicated systems. A recent review
paper [39] describes such research activities.

With regard to a useful statistical model describing solid (gas hydrate)
systems, the van der Waals–Platteeuw theory is well known [40], and
successful applications to real substances have been demonstrated [41].
Recently, an attempt to formulate a unified solid-liquid-vapor EOS model
has been reported based on the cell theory [42]. However, the EOS is not
analytically closed, and the predicted results are quite disappointing: pre-
dicting a negative triple-point pressure, negative pressures in VLE, and
even worse the disappearance (critical point) of the solid-liquid phase tran-
sition which is qualitatively incorrect.

The present approach to understand the solid-liquid-vapor states of
matter in a single unified EOS is empirical, but the proposed EOS satisfies
the known thermodynamic observations. Also it is simple, analytical, and
able to be applied to actual cases with reasonable accuracy. In the follow-
ing subsections, we will discuss the present EOS, concerning further
improvements, limitations, possible applications, and related matters.

4.1. Pure Compounds

The proposed empirical EOS would be the simplest analytical form to
describe the solid-liquid-vapor state in a unified way, and can be regarded
as a physically reasonable extension of the original van der Waals fluid
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EOS. By allowing the proper temperature dependence on some of the EOS
parameters, thermodynamic properties of simple substances such as noble
gases, methane, and carbon dioxide have been modeled with reasonable
accuracy, including the solid phase. The present demonstration is rather to
show the feasibility of this new EOS, using limited experimental informa-
tion: the VLE critical point and the triple point. It is certainly possible to
model the property of real compounds more accurately, by fitting more
experimental data such as the vapor pressure curve, saturated liquid densi-
ties, heat capacity data, and so forth. In addition to the temperature
dependence on the a and b parameters in Eq. (5), the c and/or d param-
eters may be treated as being T-dependent as well, in order to improve the
accuracy in the actual application, although the thermodynamically derived
functions and analyses will become more complicated.

Another improvement in the accuracy will be the use of the more
general form of Eq. (4). In the present simplest case, the critical compress-
ibility factor Zc is larger than 0.375, essentially the same as that of the
original van der Waals EOS. This is due to the use of the original van der
Waals attraction form, and limits the numerical accuracy in vapor density
since Zc is close to 0.3 for many actual compounds. This situation can be
improved by the use of q=1 and r=0, or q=2 and r= − 1 in Eq. (4), as
well known in the general cubic EOS [Eq. (2)]. The use of k value larger
than one in Eq. (4) may also improve the numerical accuracy, particularly
in condensed phase properties, based on the discussion in Section 4.2.

It should be emphasized here that the present EOS is only valid for so-
called ‘‘simple’’ fluids, which does not necessarily mean compounds with
small molecular sizes. For example, water is regarded as a ‘‘complex’’
compound with the hydrogen bonding. The solid state ice has several
modifications, and does not form the closest-packing structures, where the
solid density is smaller than the liquid and the melting curve shows the
negative slope for the Ice-I modification [43]. In general, solids have mul-
tiple modifications with different crystal symmetries. The present EOS does
not consider such different symmetries of the solid state.

4.2. Hard Spheres

As mentioned in Section 3.3, it may be worthwhile to discuss the virial
coefficient of the hard-sphere system, although it is only for the fluid-only
state. The hard-sphere model [Eq. (32)] of the present EOS applies for
both fluid and solid phases, where the virial expansion turned out to be
nearly the same as the repulsive core PHC of van der Waals. The purpose of
the present work is not to develop an accurate equation for the fluid
branch. For that purpose the excellent empirical equation has already been
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developed by Carnahan and Starling [8]. However, it is interesting to
simulate the fluid-phase virial coefficients, by making Eq. (32) have only a
fluid branch: i.e., by assigning appropriate values in the EOS constants
(b, c, and d), or in other words by removing the present EOS parameter
restrictions [see Section 2]. For this purpose, we use the more general PHC

form in Eq. (4), instead of Eq. (32):

Z=
V

V − b
1V − d

V − c
2k

=11 −
b
V
2−1 11 −

d
V
2k 11 −

c
V
2−k

. (34)

This can be analytically expanded and rearranged as the following virial
expansion form with the dimensionless coefficient Bi:

Z=1+ C
.

i=2
Bi
12ps3

3
2 i − 1 1 1

V
2 i − 1

, (35)

where Bi is a function of b, c, and d, which are assumed here to be dimen-
sionless, being normalized by a volume, 2ps3/3.

With a given k value, we have three adjustable parameters (b, c, and d),
which can be determined so as to reproduce the well-known three (exact)
values (B2=1, B3=0.625, and B4=0.2869) [9, 35, 36]. Then we look at
the behavior of the other coefficients that give us some idea about the
accuracy of the present EOS form for the repulsive part PHC. Five cases
with k=1, 2, 3, 4, and 5 have been calculated up to B8. The results are
compared in Table VI with the exact virial calculations and some other
models. It should be mentioned that in the case of k=1, only two values
(B2 and B3) are used assuming b=c, since it turned out that three real
roots for b, c, and d cannot exist in this case, for the exact values, B2, B3,
and B4.

The increase in k values improves the higher-order virial coefficients
and approaches those of the exact theoretical calculation and the Carnahan–
Starling empirical equation. Although this is only for the fluid-phase
branch, it suggests that the use of k=4 or 5 for the present proposed EOS
may improve the accuracy of solid/liquid properties. However, it must be
mentioned here that the comparison of virial expansions can hardly be jus-
tified for the validity of theoretical models in the high-density region [44].

4.3. EOS Parameter Regions B and C in Fig. 3

In Section 2, we have discussed the physically proper parameters for
the present EOS and summarized the results in Fig. 3. The parameters in
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Table VI. Comparison of Hard-Sphere Virial Coefficients for the Fluid Phasea

B2 B3 B4 B5 B6 B7 B8

Exact 1 0.625 0.2869 0.1103 0.0386 0.0131 0.0040
CS 1 0.625 0.2823 0.1094 0.0391 0.0132 0.0043

PYP 1 0.625 0.2500 0.0859 0.0273 0.0083 0.0024
PYC 1 0.625 0.2969 0.1211 0.0449 0.0156 0.0052
k=1 1 0.625 0.3343 0.1652 0.0779 0.0355 0.0117
k=2 1 0.625 0.2869 0.1460 0.0524 0.0294 0.0068
k=3 1 0.625 0.2869 0.1295 0.0494 0.0211 0.0051
k=4 1 0.625 0.2869 0.1148 0.0400 0.0133 0.0040
k=5 1 0.625 0.2869 0.1127 0.0385 0.0122 0.0036

a ‘‘Exact’’ is the result from the exact cluster integration [36], ‘‘CS’’ is the Carnahan–Starling
empirical equation [8], ‘‘PYP and PYC’’ are the Percus–Yevick analytical equations of hard
spheres for the pressure and compressibility equations [9], respectively, and ‘‘k=1, 2, 3,
4, 5’’ are the present hard-sphere model of Eq. (34).

Region A of Fig. 3 have been said to be physically correct for EOS behav-
iors and used in the present analyses. However, two other areas (Regions B
and C) in Fig. 3 deserve special comments.

Region B provides an interesting EOS topology, where the critical
point occurs inside the solid branch, and a stable fluid branch exists. An
isothermal PV diagram below the critical temperature is shown in Fig. 12.
This feature may be used as a local model describing peculiar behaviors
observed in Cs (Cesium) and Ce (Cerium) [45, 46]. Ordinary solids do not
have the solid-solid critical point, due to the different symmetry of crystal
structures. At low temperatures, however, solid Ce has two modifications
(a-Ce and c-Ce) which possess the same fcc (face-centered-cubic) structures
with different lattice constants, and then in the solid-solid equilibrium the
critical point exists. Also, in the case of Cs, both Cs II and Cs III solids
have the same fcc structure but with a smaller lattice constant for the latter.
Their coexistence (iso-structural phase transition) curve ends at the solid-
solid-liquid triple point around 4.25 MPa and 88°C [45].

The EOS topology in Region C of Fig. 3 is illustrated in Fig. 13. Here,
only solid and vapor branches stably exist. This situation occurs when the
parameter d becomes larger than c (and b), and is physically correct for the
case for temperatures below the triple point, where no liquid state exists.
Also, the first-order phase transition between the solid and vapor can be
calculated with the Maxwell’s equal-area construction. In the present
analyses, the EOS topology is based on the Region A type [Fig. 1] for all
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Fig. 12. Schematic isothermal PV diagram of Eq. (5) with the
EOS parameter region B in Fig. 3. Iso-structurual solid-solid
phase transitions occur and their critical point exists at a higher
temperature.
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0 b c

solid

vapor

Fig. 13. Schematic isothermal PV diagram of Eq. (5)
with the EOS parameter region C in Fig. 3. No stable
liquid branch exists. This topological shape represents
the case of temperatures below the triple point.
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temperatures. The existence of the stable liquid branch below the triple-
point temperature must be regarded as supercooled liquid. This suggests
the d (or c) parameter must change at well below the triple point in order
for the EOS topology to be more physically correct. In this regard, it
should be mentioned that the general EOS form, Eq. (4) with k=even
integer case, does not possess this type of EOS topology, and the stable
liquid-phase branch always exists. Thus, an EOS with k=odd integer will
be more flexible and physically a better choice for modeling the entire
temperature region.

4.4. Mixtures

As shown in Section 3.2, the present EOS model can be applied to
mixtures as well. The example investigated there is a binary system of CO2

(carbon dioxide) and CH4 (methane). The observed peculiar shape of the
solid-liquid-vapor triple-point locus has been successfully predicted, as
shown in Fig. 8, where it shows a maximum. The Px phase diagram
(Fig. 10) is more complicated than the Tx phase diagram (Fig. 9), and shows
the multiplicity, reflecting the two (left and right) sides of the maximum in
Fig. 8. The two sets of compositions at a given pressure in Fig. 10 may
need some explanations. Each (solid, liquid, or vapor) phase has a convex
shape in the pressure-composition diagram; the solid-phase ‘‘gap’’ is too
small to be seen in the scale shown in Fig. 10. The same (left or right) side
composition of each peak is the proper pair that corresponds to a set of the
triple-point condition. It is quite unusual, compared with the case of the
familiar three-phase locus of binary liquid-liquid-vapor triple points.
Although the discussion about this particular behavior is outside the scope
of the present purpose, it may be worthwhile to make some brief comments.

The curious maximum of the triple-point locus arises from the unique
situation, where the supercritical fluid of CH4 interacts with the CO2 SVE
phase. In order to obtain further insights, we use the following thermody-
namic relation, which holds for the univariant (solid-liquid-vapor equilib-
rium) state of binary mixtures:

T
dP
dT

=
(HL − HS)+r(HV − HS)
(VL − VS)+r(VV − VS)

—
DHL–S+r DHV–S

DVL–S+r DVV–S —
DH
DV

, (36)

where r=−xV − xS

xL − xS — − DxV–S

DxL–S , the superscripts S, L, and V refer to the solid-,
liquid-, and vapor-phase property, respectively, with mole fraction x of
CH4 (or CO2). Ha and Va (a=S, L, or V) are molar enthalpy and molar
volume, respectively: Ha=;2

i=1 Ha
i xi and Va=;2

i=1 Va
i xi. Equation (36)

can be derived without difficulty using the thermodynamic equilibrium
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condition (the equality of the chemical potential among each phase),
together with the Maxwell relation and the Gibbs–Duhem relation. This is
an analog of the well-known Clausius–Clapeyron equation for the uni-
variant (two-phase equilibrium) state of pure compounds, which is often used
to obtain a latent heat of the first-order phase change of pure compounds.

Equation (36) is formally the same as the Clausius–Clapeyron equa-
tion, but DH defined here cannot be interpreted simply as the latent heat of
the three-phase transition, although the triple point certainly possesses the
latent heat due to the first-order phase transition. The physical meaning of
DH in Eq. (36) is not so straightforward, but often it is interpreted as an
enthalpy change of a formal (decomposition or formation) reaction of each
phase, although no true chemical reactions are occurring [38].

Here we use Eq. (36) simply to determine a thermodynamic relation
at the maximum of the triple-point locus (Fig. 8). At the maximum,
dP/dT=0. Then, the following relation holds at the maximum:

DHL–S

DxL–S =
DHV–S

DxV–S . (37)

The positive and negative (left and right side of the maximum) slope in
dP/dT is due to the sign of DH in Eq. (36), since DV is always positive
based on the result in Fig. 10.

As demonstrated in Section 3.2, the present EOS can quantitatively
predict mixture properties including the solid phase. It is interesting to see
more actual applications, including multicomponent mixtures. In addition,
because of the simplicity of the present EOS form, it may become a useful
tool for the topological classification of the global phase diagram of mix-
tures including the solid state, as remarkably done in the fluid-only case by
van Konynenberg and Scott [3], using the original van der Waals EOS.

5. CONCLUSIONS

As an extension of the van der Waals fluid EOS, a simple analytical
EOS for solid-liquid-vapor phases has been developed, based on funda-
mental thermodynamic requirements and analytical geometry. It has been
demonstrated that the thermodynamic behaviors and properties of simple
pure substances (argon, methane, and carbon dioxide) are modeled
reasonably well with this EOS, including the well-known solid/fluid phase
transition of hard spheres.

In addition, it has been shown that the present model can be applied
to mixtures as well. The triple point (solid/liquid/vapor equilibrium) locus
of a binary system of carbon dioxide and methane has been successfully
modeled.
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Although further improvements in accuracy and limitations remain to
be resolved, the beauty of the present EOS is its simplicity, like the original
van der Waals fluid EOS. Among others, one of the promising applications
of the present simple EOS may be the classification of the global phase
behavior of binary mixtures including the solid phase [17, 47].
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